342 research outputs found

    An eighteenth century tunnel as possible archive for palaeoclimate studies

    Get PDF
    The former Silva Lake (present “Pian del Lago”, Siena, Italy) developed during late Quaternary and formed as a poljie on the Triassic limestones. The depression, nowadays completely drained, is N-S oriented, 4.5 km wide and 12 km long. The lake never exceeded 6 m in depth, and it was mainly a grassy swamp during the dry season. The lake depression is filled with 20 to 30 m of a reddish siltyclayey succession. Starting from the Middle Age till late 18th century, the shallow waters of the lake and the humid area around acted as a swampy area infested by malaria. In 1766 a Sienese nobleman, Francesco Bindi Sergardi drained the lake excavating a drainage 2124m-long tunnel in Triassic limestones to connect the Silva Lake with the closeby Rigo Creek. However, quite often the tunnel was filled with debris and the lake swamped up again. In 1780 Pietro Leopoldo Grand Duke of Tuscany definitively reclaimed the Silva Lake and completed the construction of the drainage tunnel by paving and extending it for an additional 197 m. Since then, the tunnel is called the ”Canale del Gran Duca”. The entrance altitude of the canal is at 252 m a.s.l., and the exit is at 247 m a.s.l. The altitude difference is therefore of 5 m, and the canal floor has a slope of 0.2 %. The canal is for the most part paved but, in places, solid walls of Triassic limestone are still visible. Diffuse karst features are forming locally. Stalactites have lengths varying from 5 to 10 cm, and flowstones occur along the tunnel walls. The presence of these speleothems has allowed geochemical investigations to establish climatic variations of the last two centuries. The tunnel was probably cleaned and well maintained for sometime after its construction (1780), and it is likely that all the remaining speleothems have developed in the last two centuries with an estimated growth of a 0.5/6 mm per year. A petrographic investigation of a well laminated flowstone with a parasitic stalagmite has been undertaken to determine the growth mechanisms. Oxygen and carbon isotope data (δ18O and δ13C values) were used as indirect proxies for palaeoenvironmental reconstructions. Preliminary, data show significant variations along the axis of the flowstone possibly related to environmental and climatic variations within and above the “canale”

    Heavy oxygen recycled into the lithospheric mantle

    Get PDF
    Magmas in volcanic arcs have geochemical and isotopic signatures that can be related to mantle metasomatism due to fluids and melts released by the down-going oceanic crust and overlying sediments, which modify the chemistry and mineralogy of the mantle wedge. However, the effectiveness of subduction-related metasomatic processes is difficult to evaluate because the composition of arc magmas is often overprinted by interactions with crustal lithologies occurring during magma ascent and emplacement. Here, we show unequivocal evidence for recycling of continental crust components into the mantle. Veined peridotite xenoliths sampled from Tallante monogenetic volcanoes in the Betic Cordillera (southern Spain) provide insights for mantle domains that reacted with Si-rich melts derived by partial melting of subducted crustal material. Felsic veins crosscutting peridotite and the surrounding orthopyroxene-rich metasomatic aureoles show the highest 18O/16O ratios measured to date in upper mantle assemblages worldwide. The anomalously high oxygen isotope compositions, coupled with very high 87Sr/86Sr values, imply the continental crust origin of the injected melts. Isotopic anomalies are progressively attenuated in peridotite away from the veins, showing 18O isotope variations well correlated with the amount of newly formed orthopyroxene. Diffusion may also affect the isotope ratios of mantle rocks undergoing crustal metasomatism due to the relaxation of 18O isotope anomalies to normal mantle values through time. Overall, the data define an O isotope “benchmark” allowing discrimination between mantle sources that attained re-equilibration after metasomatism ( requiring at least 5 Myr) and those affected by more recent subduction-derived enrichment processes

    Fluid history related to the early Eocene-middle Miocene convergent system of the Northern Apennines (Italy). Constraints from structural and isotopic studies

    Get PDF
    The late Eocene-middle Miocene erosive plate boundary between the European and the Adriatic plates is exhumed in the Northem Apennines of Italy. The fossil fault zone is 500 m thick and the outcropping portion exposes the :first 5 km of its depth. At this plate boundary basai and frontal tectonic erosion incorporated unlithified, fluid-rich sediments into the fault zone. The deformation and nature of the material along the plate boundary define a fossil subduction channel. Here we couple a detailed structural analysis of the Apennine subduction channel, focusing, in particular, on calcite veins, with a stable isotope analysis to characterize the fluid regime along an active subduction channel. The 13C and 180 composition of calcite vein and host rock samples within the fault zone indicates that there is a deep metamorphic source of fluids migrating upward along the subduction channel, in addition to locally derived fluid components. Dewatering of subducting turbidites contributes significantly only in the shallowest part of the channel. Structural observations indicate fluid flow along and across the subduction channel. At deep levels fluid flow is associated with discrete deformation events on shear faults offset by dilational jogs :filled with implosion breccias. At intennediate levels deformation is stili cyclic and associated with repeated crack-and-seal events. At the shallowest levels deformation occurred, while portions of the subducting material were stili unlithi:fied. Here the deformation was quasicontinuous, without associated vein development. Both isotope and structural analyses indicate that this erosive subduction channel behaved as a weak: fault with a vertical maximum principal stres

    PM2.5 Size Distribution and Characterization by Carbon Isotope in Tuscany (Italy)

    Get PDF
    This study is focused on the numerical distribution and isotopic description of PM2.5 developed within the PATOS II (Particolato Atmosferico TOScana) regional project about the characterization and source apportionment of atmospheric aerosol (PM2.5) in Tuscany. PM isotopic analysis can play an important role in the individuation of primary and secondary sources and also in the determination of the natural/biogenic or anthropogenic/combustion contribution to the measured concentration. In addition, the PM2.5 particle number concentrations and the relative contribution of ultrafine particles are interpreted to identify the emission sources, the main atmospheric processes and the factors related with the dispersion of atmospheric pollutants. The analytical results in term of δ13C parameter show a greater variability in the urban and suburban background sites than in the urban traffic site, where the δ13C parameter does not vary significantly: this could be strictly correlated with traffic emissions and independently from the total particles number. On the contrary, urban and suburban background sites are affected by the meteorology and atmospheric processes. For this reason we can observe a wider variability in the δ13C values due to the contribution of different emissions sources. Despite all, in urban background we can observe lower δ13C values related with high number of total particles; this effect could be related with a traffic emission transport, because the δ13C parameter is similar to the δ13C value of urban traffic site

    PM Characterization by Carbon Isotope

    Get PDF

    Erupted cumulate fragments in rhyolites from Lipari (Aeolian Islands)

    Get PDF
    Over the last similar to 267 ky, the island of Lipari has erupted magmas ranging in compositions from basaltic andesites to rhyolites, with a notable compositional gap in the dacite field. Bulk geochemical and isotopic compositions of the volcanic succession, in conjunction with major and trace elemental compositions of minerals, indicate that the rhyolites were dominantly generated via crystal fractionation processes, with subordinate assimilation. Radiogenic (Sr, Nd, and Pb) and stable (O) isotopes independently suggest <= 30 % of crustal contamination with the majority of it occurring in mafic compositions, likely relatively deep in the system. Within the rhyolites, crystal-rich, K2O-rich enclaves are common. In contrast to previous interpretations, we suggest that these enclaves represent partial melting, remobilization and eruption of cumulate fragments left-over from rhyolite melt extraction. Cumulate melting and remobilization is supported by the presence of (1) resorbed, low-temperature minerals (biotite and sanidine), providing the potassic signature to these clasts, (2) reacted Fo-rich olivine, marking the presence of mafic recharge, (3) An(38-21) plagioclase, filling the gap in feldspar composition between the andesites and the rhyolites and (4) strong enrichment in Sr and Ba in plagioclase and sanidine, suggesting crystallization from a locally enriched melt. Based on Sr-melt partitioning, the high-Sr plagioclase would require similar to 2300 ppm Sr in the melt, a value far in excess of Sr contents in Lipari and Vulcano magmas (50-1532 ppm) but consistent with melting of a feldspar-rich cumulate. Due to the presence of similar crystal-rich enclaves within the rhyolites from Vulcano, we propose that the eruption of remobilized cumulates associated with high-SiO2 rhyolites may be a common process at the Aeolian volcanoes, as already attested for a variety of volcanic systems around the world

    Subduction-related hybridization of the lithospheric mantle revealed by trace element and Sr-Nd-Pb isotopic data in composite xenoliths from Tallante (Betic Cordillera, Spain)

    Get PDF
    Ultramafic xenoliths are rarely found at convergent plate margins. A notable exception is in the Betic Cordillera of southern Spain, where the eruption of xenolith-bearing alkaline basalts during the Pliocene post-dated the Cenozoic phase of plate convergence and subduction-related magmatism. Mantle xenoliths of the monogenetic volcano of Tallante display extreme compositional heterogeneities, plausibly related to multiple tectono-magmatic episodes that affected the area. This study focuses on two peculiar composite mantle xenolith samples from Tallante, where mantle peridotite is crosscut by felsic veins of different size and mineralogy, including quartz, orthopyroxene, and plagioclase. The veins are separated from the peridotite matrix by an orthopyroxene-rich reaction zone, indicating that the causative agents were alkali-rich hydrous silica-oversaturated melts, which were likely related to recycling of subducted continental crust components. The present study reports new and detailed major and trace elements and Sr-Nd-Pb analyses of the minerals in the composite Tallante xenoliths that confirm the continental crust derivation of the metasomatic melts, and clarifies the mode in which subduction-related components are transferred to the mantle wedge in orogenic areas. The particular REE patterns of the studied minerals, as well as the variation of the isotopic ratios between the different zones of the composite xenoliths, reveal a complex metasomatic process. The distribution of the different elements, and their isotope ratios, in the studied xenoliths are controlled by the mineral phases stabilised by the interaction between the percolating melts and the peridotitic country rock. The persistence of marked isotopic heterogeneities and the lack of re-equilibration suggest that metasomatism of the sub-continental lithospheric mantle occurred shortly before the xenolith exhumation. In this scenario, the studied xenoliths and the metasomatic processes that affected them may be representative of the mantle sources of mafic potassic to ultrapotassic magmas occurring in post-collisional tectonic settings

    High H2O content in Pyroxenes of residual mantle Peridotites at a Mid Atlantic ridge segment

    Get PDF
    Global correlations of mid-ocean-ridges basalt chemistry, axial depth and crustal thickness have been ascribed to mantle temperature variations affecting degree of melting. However, mantle H2O content and elemental composition may also play a role. How H2O is distributed in the oceanic upper mantle remains poorly constrained. We tackled this problem by determining the H2O content of orthopyroxenes (opx) and clinopyroxenes (cpx) of peridotites from a continuous lithospheric section created during 26 Ma at a 11°N Mid-Atlantic Ridge segment, and exposed along the Vema Transform. The H2O content of opx ranges from 119 ppm to 383 ppm; that of cpx from 407 ppm to 1072 ppm. We found anomalous H2O-enriched peridotites with their H2O content not correlating inversely with their degree of melting, although H2O is assumed to be incompatible during melting. Inverse correlation of H2O with Ce, another highly incompatible component, suggests post-melting H2O enrichment. We attribute a major role to post-melting temperature-dependent diffusion of hydrogen occurring above the melting region, where water-rich melt flows faster than residual peridotites through dunitic conduits cross-cutting the uprising mantle. Accordingly, estimates of the H2O content of the MORB mantle source based on H2O in abyssal peridotites can be affected by strong uncertainties

    Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton

    Get PDF
    Nominally anhydrous minerals in 46 peridotite xenoliths hosted by Cenozoic basalts from five localities (Fangshan, Penglai, Qixia, Changle, and Hebi) of the eastern part of the North China Craton (NCC) have been investigated by Fourier transform infrared spectrometry (FTIR). The water contents (H2O wt %) of clinopyroxene (cpx), orthopyroxene (opx), and olivine (ol) range from 27 to 223 ppm, 8 to 94 ppm, and ∼0 ppm, respectively. On the basis of (1) the homogenous H2O content within single pyroxene grains and (2) the equilibrium partitioning of H2O between cpx and opx, it is suggested that the pyroxenes largely preserve theH2Ocontent of their mantle source, although possible H loss during xenolith ascent cannot be excluded for ol. The recalculated whole‐rock H2O contents, using mineral modes and assuming a partition coefficient of 10 for water between cpx and ol, range from 6 to 56 ppm (average of 23 ± 13 ppm). In combination with previously reported data, the recalculated whole‐rock water contents of peridotite xenoliths (105 samples from 9 localities) hosted by Cenozoic basalts from the eastern part of the NCC range from 6 to 85 ppm (average of 25 ± 18 ppm). The Cenozoic lithospheric mantle of the eastern part of the NCC is therefore characterized by a low water content compared to continental lithospheric mantle worldwide represented by typical cratonic and off‐cratonic peridotites (normally 40–180 ppm, with average values of 119 ± 54 ppm and 78 ± 45, respectively) and to oceanic mantle values (>50 ppm) inferred from MORB and OIB. Peridotite xenoliths have low‐to‐moderate spinel Fe3+/SFe (0.02–0.34) and whole rock DFMQ values (from −4.2 to 2.2, normally between −2.5 and 1.5), which are not correlated with pyroxene H2O contents. Therefore, the low water contents cannot have resulted from oxidation of the mantle xenoliths and may have been caused instead by heating from an upwelling asthenosphere flow that acted in concert with NCC lithospheric thinning during the late Mesozoic to early Cenozoic. If so, the present eastern NCC lithospheric mantle represents essentially relict ancient lithospheric mantle after the thinning event, rather than newly accreted and cooled asthenospheric mantle
    corecore